Numerical Solution of Equations

Cahit Karakuş

İstanbul, Turkey

Numerical methods

- Direct methods \rightarrow attempt to solve a numerical problem by a finite sequence of operations. In absence of round off errors deliver an exact solution; e.g., solving a linear system $A x=b$ by Gaussian elimination.
- Iterative methods \rightarrow attempt to solve a numerical problem (for example, finding the root of an equation or system of equations) by finding successive approximations to the solution starting from an initial guess.
- The stopping criteria: the relative error

$$
\varepsilon_{a}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| 100 \%
$$

is smaller than a pre-specified value.

- When used
- The only alternative for non-linear systems of equations;
- Often useful even for linear problems involving a large number of variables where direct methods would be prohibitively expensive or impossible.
- Convergence of a numerical methods \rightarrow if successive approximations lead to increasingly smaller relative error. Opposite to divergent.

Iterative methods for finding the roots

- Bracketing methods
- Open methods:
- require only a single starting value or two starting values that do not necessarily bracket a root.
- may diverge as the computation progresses, but when they do converge, they usually do so much faster than bracketing methods.

Bracketing vs Open; Convergence vs Divergence

a) Bracketing method \rightarrow start with an interval. Open method $\quad \rightarrow$ start with a single initial guess
b) Diverging open method
c) Converging open method - note speed!

Simple Fixed-Point Iteration

- Rearrange the function $f(x)=0$ so that x is on the left-hand side of the equation:

$$
x=g(x)
$$

- Use the new function g to predict a new value of x. The recursion equation:

$$
x_{i+1}=g\left(x_{i}\right)
$$

- The approximate error is:

$$
\varepsilon_{a}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| 100 \%
$$

- Graphically, the root is at the intersection of two curves:

$$
\begin{aligned}
& y_{1}(x)=g(x) \\
& y_{2}(x)=x .
\end{aligned}
$$

Example

- Solve $f(x)=e^{-x}-x$
- Re-write as: $x=g(x) \rightarrow x=e^{-x}$
- Start with an initial guess (here, 0)

i	x_{i}	$\left\|\varepsilon_{\mathrm{a}}\right\| \%$	$\left\|\varepsilon_{\mathrm{t}}\right\| \%$	$\left\|\varepsilon_{\mathrm{t}}\right\| /\left\|\varepsilon_{\mathrm{t} \mid}\right\|_{\mathrm{i}-1}$
0	0.0000		100.000	
1	1.0000	100.000	76.322	0.763
2	0.3679	171.828	35.135	0.460
3	0.6922	46.854	22.050	0.628
4	0.5005	38.309	11.755	0.533

- Continue until some tolerance is reached

(b)

More on Convergence

Graphically \rightarrow the solution is at the intersection of the two curves. We identify the point on y_{2} corresponding to the initial guess and the next guess corresponds to the value of the argument x where $y_{1}(x)=y_{2}(x)$.

Convergence of the simple fixed-point iteration method requires that the derivative of $g(x)$ near the root has a magnitude less than 1.
a) Convergent, $0 \leq g^{\prime}<1$
b) Convergent, $-1<g^{\prime} \leq 0$
c) Divergent, $g^{\prime}>1$
d) Divergent, $g^{\prime}<-1$

Newton-Raphson Method

- Express x_{i+1} function of x_{i} and the values of the function and its derivative at x_{i}.

$$
\begin{aligned}
& f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-0}{x_{i}-x_{i+1}} \\
& x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
\end{aligned}
$$

- Graphically \rightarrow draw the tangent line to the $f(x)$ curve at some guess x, then follow the tangent
 line to where it crosses the x-axis.
- This presentation covers the numerical solution of equations for all A Level pure mathematics syllabuses.
- The methods described are

Change of Sign - Decimal Search
Fixed Point Iteration - rearranging a formula
Newton-Raphson Iteration

- Most slides proceed with automatic timing.
- Use the mouse to click on a button after each slide.

Why a numerical method?

An equation $f(x)=0$, where $f(x)=x^{3}-7 x+3$, has 3 real roots, but there is no simple analytical method of finding them.

The table and graph suggest first approximations to the roots of the equation $x^{3}-$ $7 x+3=0$.

$$
\text { Graph of } y=x^{\wedge} 3-7 x+3
$$

x	$f(x)$
-4	-33
-3	-3
-2	9
-1	9
0	3
1	-3
2	-3
3	9
4	39

The lower root lies in the interval ${ }^{-30}-3<x<-2$
The middle root lies in the interval $0<x<1$
The upper root lies in the interval $2<x<3$

Fixed Point Iteration

The equation $\mathrm{f}(x)=0$, where $\mathrm{f}(x)=x^{3}-7 x+3$, may be re-arranged to give $x=\left(x^{3}+3\right) / 7$.

Intersection of the graphs of $y=x$ and $y=\left(x^{3}+3\right) / 7$ represent roots of the original equation $x^{3}-$ $7 x+3=0$.

Fixed Point Iteration

The rearrangement $x=\left(x^{3}+3\right) / 7$ leads to the iteration

$$
x_{n+1}=\frac{x_{n}^{3}+3}{7}, \quad n=0,1,2,3, \ldots
$$

To find the middle root α, let initial approximation $x_{0}=2$.

$$
\begin{aligned}
& x_{1}=\frac{x_{0}{ }^{3}+3}{7}=\frac{2^{3}+3}{7}=1.57143 \\
& x_{2}=\frac{x_{1}{ }^{3}+3}{7}=\frac{1.57143^{3}+3}{7}=0.98292 \\
& x_{3}=\frac{x_{2}{ }^{3}+3}{7}=\frac{0.98292^{3}+3}{7}=0.56423 \\
& x_{4}=\frac{x_{3}{ }^{3}+3}{7}=\frac{0.56423^{3}+3}{7}=0.45423
\end{aligned}
$$

The iteration slowly converges to give $\alpha=\mathbf{0 . 4 4 1}$ (to 3 s.f.)

Fixed Point Iteration

The rearrangement $x=\left(x^{3}+3\right) / 7$ leads to the iteration

$$
x_{n+1}=\frac{x_{n}^{3}+3}{7}, \quad n=0,1,2,3, \ldots
$$

For $x_{0}=2$ the iteration will converge on the middle root α, since $g^{\prime}(\alpha)<1$.

	n	x_{n}
\checkmark	0	2
\square	1	1.57143
\square	2	0.98292
\square	3	0.56423
	4	0.45423
	5	0.44196
	6	0.4409
	7	0.44082
	8	0.44081

Fixed Point Iteration - breakdown

The rearrangement $x=\left(x^{3}+3\right) / 7$ leads to the iteration

$$
x_{n+1}=\frac{x_{n}^{3}+3}{7}, \quad n=0,1,2,3, \ldots
$$

For $x_{0}=3$ the iteration will diverge from the upper root α.

$\vec{\square} \quad$| n | x_{n} |
| ---: | ---: |
| 0 | 3 |
| 1 | 4.28571 |
| 2 | 11.6739 |
| 3 | 227.702 |
| 4 | 1686559 |
| 5 | $6.9 E+17$ |

The iteration diverges because $\mathrm{g}^{\prime}(\alpha)>1$.

NEWTON-RAPHSON ITERATION

The Newton Raphson method is based on the iteration:

$$
x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)}, \quad n=0,1,2,3, \ldots
$$

with initial approximation x_{0}.

Gradient of tangent

$$
\begin{aligned}
& \mathrm{f}^{\prime}\left(x_{0}\right)=\frac{\mathrm{f}\left(x_{0}\right)}{x_{0}-x_{1}} \\
& \Rightarrow \quad x_{1}=x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

Newton-Raphson Iteration

To solve the equation $\mathrm{f}(x)=0$, where $\mathrm{f}(x)=x^{3}-7 x+3$, use the iteration :

$$
x_{n+1}=x_{n}-\frac{x_{n}{ }^{3}-7 x_{n}+3}{3 x_{n}^{2}-7}, \quad n=0,1,2,3, \ldots
$$

To find the upper root α, let initial approximation $x_{0}=3$.

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{x_{0}{ }^{3}-7 x_{0}+3}{3 x_{0}{ }^{2}-7}=3-\frac{3^{3}-7 \times 3+3}{3 \times 3^{2}-7}=2.55 \\
& x_{2}=x_{1}-\frac{x_{1}{ }^{3}-7 x_{1}+3}{3 x_{1}{ }^{2}-7}=2.55-\frac{2.55^{3}-7 \times 2.55+3}{3 \times 2.55^{2}-7}=2.411573 \\
& x_{3}=x_{2}-\frac{x_{2}{ }^{3}-7 x_{2}+3}{3 x_{2}{ }^{2}-7}=2.41 . .-\frac{2.41 . .^{3}-7 \times 2.41 . .+3}{3 \times 2.41 . .^{2}-7}=2.397795
\end{aligned}
$$

etc.
The iteration quickly converges, giving $\boldsymbol{\alpha}=\mathbf{2 . 4 0}$ (to 3.s.f.)

Newton-Raphson Iteration

To solve the equation $\mathrm{f}(x)=0$, where $\mathrm{f}(x)=x^{3}-7 x+3$, use the iteration :

$$
x_{n+1}=x_{n}-\frac{x_{n}{ }^{3}-7 x_{n}+3}{3 x_{n}^{2}-7}, \quad n=0,1,2, \ldots
$$

To find the upper root α, let initial approximation $x_{0}=3$.

The iteration quickly converges, giving $\boldsymbol{\alpha}=\mathbf{2 . 4 0}{ }^{\boldsymbol{x}}$ (to 3.s.f.)

Newton-Raphson Iteration

To solve the equation $\mathrm{f}(x)=0$, where $\mathrm{f}(x)=x^{3}-7 x+3$, use the iteration :

$$
x_{n+1}=x_{n}-\frac{x_{n}^{3}-7 x_{n}+3}{3 x_{n}^{2}-7}, \quad n=0,1,2, \ldots
$$

Choice of intial approximation x_{0} will determine which root is found.

n	x_{n}	x_{n}	x_{n}
0	-2	1	3
1	-3.8	0.25	2.55
2	-3.10419	0.43578	2.411573
3	-2.86763	0.440803	2.397795
4	-2.83888	0.440808	2.397662
5	-2.83847	0.440808	2.397662

Initial approximations $x_{0}=-2, x_{0}=1$ and $x_{0}=3$.
Iterations converge to $-2.84,0.441$ and 2.40 respectively (to 3 s.f.)

Newton-Raphson Iteration - breakdown

To solve the equation $f(x)=0$, where $f(x)=1 / x+3$, use the iteration :

$$
x_{n+1}=x_{n}-\frac{1 / x_{n}+3}{-1 / x_{n}^{2}}, \quad n=0,1,2,3, \ldots
$$

To find the only root α, let initial approximation $x_{0}=-1$.

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{1 / x_{0}+3}{-1 / x_{0}^{2}}=-1-\frac{1 /(-1)+3}{-1 /(-1)^{2}}=1 \\
& x_{2}=x_{1}-\frac{1 / x_{1}+3}{-1 / x_{1}^{2}}=1-\frac{1 / 1+3}{-1 / 1^{2}}=5 \\
& x_{3}=x_{2}-\frac{1 / x_{2}+3}{-1 / x_{2}^{2}}=5-\frac{1 / 5+3}{-1 / 5^{2}}=85
\end{aligned}
$$

etc. The iteration quickly diverges, failing to give the root α.

Newton-Raphson Iteration - breakdown

To solve the equation $\mathrm{f}(x)=0$, where $\mathrm{f}(x)=1 / x+3$, use the iteration :

$$
x_{n+1}=x_{n}-\frac{1 / x_{n}+3}{-1 / x_{n}^{2}}, \quad n=0,1,2,3, \ldots
$$

To find the only root α, let initial approximation $x_{0}=-1$.

	n	x_{n}
\square	0	-1
\square	1	1
\square	2	5
	3	85
	4	21845
	5	1655765

The iteration quickly diverges, failing to give the root $\alpha=-1 / 3$.

