Numerical Solution of Equations

Cahit Karakuş İstanbul, Turkey

Numerical methods

- **Direct methods** \rightarrow attempt to solve a numerical problem by a finite sequence of operations. In ulletabsence of round off errors deliver an <u>exact solution</u>; e.g., solving a linear system Ax = b by Gaussian elimination.
- **Iterative methods** \rightarrow attempt to solve a numerical problem (for example, finding the root of an ulletequation or system of equations) by finding successive approximations to the solution starting from an initial guess.
 - The stopping criteria: the relative error _

$$\varepsilon_{a} = \left| \frac{x_{i+1} - x_{i}}{x_{i+1}} \right| 100\%$$

is smaller than a pre-specified value.

- When used
 - The only alternative for non-linear systems of equations;
 - Often useful even for linear problems involving a large number of variables where direct methods would be prohibitively expensive or impossible.
- **Convergence of a numerical methods** \rightarrow if successive approximations lead to increasingly smaller • relative error. Opposite to divergent.

Iterative methods for finding the roots

- Bracketing methods
- Open methods:
 - require only a single starting value or two starting values that do not necessarily bracket a root.
 - may diverge as the computation progresses, but when they do converge, they usually do so much faster than bracketing methods.

Bracketing vs Open; Convergence vs Divergence

- a) Bracketing method \rightarrow start with an interval.
 - Open method \rightarrow start with a single initial guess
 - b) Diverging open method
 - c) Converging open method note speed!

Simple Fixed-Point Iteration

- Rearrange the function f(x)=0 so that x is on the left-hand side of the equation: x=q(x)
- Use the new function g to predict a new value of x. The recursion equation: $x_{i+1} = g(x_i)$
- The approximate error is:

$$\varepsilon_{a} = \left| \frac{x_{i+1} - x_{i}}{x_{i+1}} \right| 100\%$$

Graphically, the root is at the intersection of two curves:

$$y_1(x) = g(x)$$

 $y_2(x) = x.$

Example

- Solve $f(x) = e^{-x} x$ ullet
- Re-write as: $x=g(x) \rightarrow x=e^{-x}$ ullet
- Start with an initial guess (here, 0)

i	X _i	ε _a %	ε _t %	$ \varepsilon_t _i/ \varepsilon_t _{i-1}$
0	0.0000		100.000	
1	1.0000	100.000	76.322	0.763
2	0.3679	171.828	35.135	0.460
3	0.6922	46.854	22.050	0.628
4	0.5005	38.309	11.755	0.533

Continue until some tolerance ulletis reached

(b)

More on Convergence

- Graphically \rightarrow the solution is at the intersection of the two curves. We identify the point on y_2 corresponding to the initial guess and the next guess corresponds to the value of the argument x where $y_1(x) = y_2(x)$.
- Convergence of the simple fixed-point iteration method requires that the derivative of g(x) near the root has a magnitude less than 1.
 - a) Convergent, $0 \le g' < 1$
 - Convergent, $-1 < g' \le 0$ b)
 - **c**) Divergent, g'>1
 - d) Divergent, g'<-1

Newton-Raphson Method

Express x_{i+1} function of x_i and the values of the function and its derivative at x_i.

$$f'(x_{i}) = \frac{f(x_{i}) - 0}{x_{i} - x_{i+1}}$$
$$x_{i+1} = x_{i} - \frac{f(x_{i})}{f'(x_{i})}$$

Graphically → draw the tangent line to the f(x) curve at some guess x, then follow the tangent line to where it crosses the x-axis.

NUMBTER SOUTON of Equations

- This presentation covers the numerical solution of equations for all A ulletLevel pure mathematics syllabuses.
- The methods described are Change of Sign - Decimal Search Fixed Point Iteration - rearranging a formula Newton-Raphson Iteration
- Most slides proceed with automatic timing. ${\color{black}\bullet}$
- Use the mouse to click on a button after each slide.

Why a numerical method ?

X

-4

-3

-2

-1

 \mathbf{O}

2

3

4

An equation f(x) = 0, where $f(x) = x^3 - 7x + 3$, has 3 real roots, but there is no simple analytical method of finding them.

The table and graph suggest first approximations to the roots of the equation $x^3 - x^3$ 7x + 3 = 0.

Graph of $y = x^{3} - 7x + 3$

Fixed Point Iteration

The equation f(x) = 0, where $f(x) = x^3 - 7x + 3$, may be re-arranged to give $x = (x^3 + 3)/7$.

Intersection of the graphs of y = x and $y = (x^3 + 3)/7$ represent roots of the original equation $x^3 - x^3 = x^3 + 3$ 7x + 3 = 0.

Fixed Point Iteration

The rearrangement $x = (x^3 + 3)/7$ leads to the iteration

$$x_{n+1} = \frac{x_n^3 + 3}{7}, \quad n = 0, 1, 2, 3, \dots$$

To find the middle root α , let initial approximation $x_0 = 2$. $x_1 = \frac{x_0^3 + 3}{7} = \frac{2^3 + 3}{7} = 1.57143$ $x_2 = \frac{x_1^3 + 3}{7} = \frac{1.57143^3 + 3}{7} = 0.98292$ $x_3 = \frac{x_2^3 + 3}{7} = \frac{0.98292^3 + 3}{7} = 0.56423$ $x_4 = \frac{x_3^3 + 3}{7} = \frac{0.56423^3 + 3}{7} = 0.45423$ etc.

The iteration slowly converges to give $\alpha = 0.441$ (to 3 s.f.)

Fixed Point Iteration The rearrangement $x = (x^3 + 3)/7$ leads to the iteration

$$x_{n+1} = \frac{x_n^3 + 3}{7}, \quad n = 0, 1, 2, 3, \dots$$

Fixed Point Iteration - breakdown

The rearrangement $x = (x^3 + 3)/7$ leads to the iteration $x_{n+1} = \frac{x_n^3 + 3}{7}, n = 0, 1, 2, 3, ...$

For $x_0 = 3$ the iteration will diverge from the upper root α .

The iteration diverges because g'(α) > 1.

NEWTON-RAPHSON ITERATION

The Newton Raphson method is based on the iteration:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, 3, \dots$$

with initial approximation x_0 .

Gradient of tangent

$$f'(x_0) =$$

 $\frac{\mathbf{f}(x_0)}{x_0 - x_1}$

Newton-Raphson Iteration

To solve the equation f(x) = 0, where $f(x) = x^3 - 7x + 3$, use the iteration :

$$x_{n+1} = x_n - \frac{x_n^3 - 7x_n + 3}{3x_n^2 - 7}, \quad n = 0, 1, 2, 3, .$$

To find the upper root α , let initial approximation $x_0 = 3$.

$$x_{1} = x_{0} - \frac{x_{0}^{3} - 7x_{0} + 3}{3x_{0}^{2} - 7} = 3 - \frac{3^{3} - 7 \times 3 + 3}{3 \times 3^{2} - 7} = 2.55$$

$$x_{2} = x_{1} - \frac{x_{1}^{3} - 7x_{1} + 3}{3x_{1}^{2} - 7} = 2.55 - \frac{2.55^{3} - 7 \times 2.55 + 3}{3 \times 2.55^{2} - 7} = 2.4$$

$$x_{3} = x_{2} - \frac{x_{2}^{3} - 7x_{2} + 3}{3x_{2}^{2} - 7} = 2.41.. - \frac{2.41..^{3} - 7 \times 2.41.. + 3}{3 \times 2.41..^{2} - 7} = 2.41..$$

etc.

The iteration quickly converges, giving $\alpha = 2.40$ (to 3.s.f.)

• •

11573

2.397795

Newton-Raphson Iteration

To solve the equation f(x) = 0, where $f(x) = x^3 - 7x + 3$, use the iteration :

$$x_{n+1} = x_n - \frac{x_n^3 - 7x_n + 3}{3x_n^2 - 7}, \quad n = 0, 1, 2, ...$$

To find the upper root α , let initial approximation $x_0 = 3$.

The iteration quickly converges, giving $\alpha = 2.40$ (to 3.s.f.)

Newton-Raphson Iteration

To solve the equation f(x) = 0, where $f(x) = x^3 - 7x + 3$, use the iteration :

$$x_{n+1} = x_n - \frac{x_n^3 - 7x_n + 3}{3x_n^2 - 7}, \quad n = 0, 1, 2, ...$$

Choice of initial approximation x_0 will determine which root is found.

n	x _n	x _n	x _n
0	-2	1	3
1	-3.8	0.25	2.55
2	-3.10419	0.43578	2.411573
3	-2.86763	0.440803	2.397795
4	-2.83888	0.440808	2.397662
5	-2.83847	0.440808	2.397662

Initial approximations $x_0 = -2$, $x_0 = 1$ and $x_0 = 3$.

Iterations converge to -2.84, 0.441 and 2.40 respectively (to 3 s.f.)

Newton-Raphson Iteration - breakdown

To solve the equation f(x) = 0, where f(x) = 1/x + 3, use the iteration :

$$x_{n+1} = x_n - \frac{1/x_n + 3}{-1/x_n^2}, \quad n = 0, 1, 2, 3, \dots$$

To find the only root α , let initial approximation $x_0 = -1$.

$$x_{1} = x_{0} - \frac{1/x_{0} + 3}{-1/x_{0}^{2}} = -1 - \frac{1/(-1) + 3}{-1/(-1)^{2}} = 1$$

$$x_{2} = x_{1} - \frac{1/x_{1} + 3}{-1/x_{1}^{2}} = 1 - \frac{1/1 + 3}{-1/1^{2}} = 5$$

$$x_{3} = x_{2} - \frac{1/x_{2} + 3}{-1/x_{2}^{2}} = 5 - \frac{1/5 + 3}{-1/5^{2}} = 85$$

etc. The iteration quickly diverges, failing to give the root α .

Newton-Raphson Iteration - breakdown

To solve the equation f(x) = 0, where f(x) = 1/x + 3, use the iteration :

$$x_{n+1} = x_n - \frac{1/x_n + 3}{-1/x_n^2}, \quad n = 0, 1, 2, 3, \dots$$

To find the only root α , let initial approximation $x_0 = -1$.

The iteration quickly diverges, failing to give the root $\alpha = -1/3$.

